miércoles, 8 de diciembre de 2010

Poliedros. Parte I -II

POLIEDROS - PARTE I



POLIEDROS -PARTE II

viernes, 3 de diciembre de 2010

POLIEDROS. Trabajo Grupal Colaborativo en Matemáticas. SEXTO GRADO "B"

Estimados alumnos, les presento el trabajo Colaborativo realizado por los alumnos del Sexto grado "B" de primaria.

Todos hicieron un excelente trabajo...........me siento muy contenta por el resultado obtenido. Gracias


Lic. Rosa Cuba Samamé

jueves, 2 de diciembre de 2010

Evaluación Final

Estimados alumnos se les recuerda que las evaluaciones en línea continuarán hasta el fin de semana anterior al Examen bimestral.

EXAMEN BIMESTRAL: VIERNES 17 DE DICIEMBRE
Los invito a ver el siguiente video, les servirá para resolver la evaluación en línea............
Pitágoras y Platón

viernes, 29 de octubre de 2010

Geometrìa

domingo, 19 de septiembre de 2010

Grandes Matemáticos de la Humanidad.



LA VIDA DEL MATEMÀTICO HENRI POINCARÈ
Nació en Nancy, Francia el 29 de abril de 1854, su padre León Poincaré fue Profesor de Medicina en la Universidad de Nancy. En la niñez su educación estuvo a cargo de su madre Eugénie Launois. Estudió en el Liceo de Nancy, donde tuvo un buen desempeño en todas las materias en especial en las Matemáticas, incluso su profesor lo llamó “Un monstruo de las Matemáticas” y ganó el “Concours Général” a nivel de todo Francia, obtuvo en 1871 su grado de bachiller en letras y ciencias.
En 1873 ingresó a la École Polytechnique, donde estudió matemáticas y publicó su primer artículo; luego ingresó a la Escuela de Minas hasta 1876, se tituló como Ingeniero en 1879. Preparó su doctorado sobre Ecuaciones Diferenciales, obtuvo el grado de Doctor en la Universidad de París en 1879.
Después de su graduación, se desempeñó como profesor en la Universidad de Caen y desde 1881 en la Universidad de París (La Sorbona). El mismo año se casó con Poulain d’Andecy y tuvo 4 hijos.
Su primer gran aporte fue el Problema de los Tres Cuerpos con el cual ganó el concurso convocado por el Rey Óscar II de Suecia en 1889, sobre la estabilidad del Sistema Solar y marca el inicio de la Teoría del Caos.
Desde 1893 ingresó al Bureau des Longitudes, con la tarea de sincronizar los horarios del mundo, con lo que enfrentó el problema que los relojes en reposo en tierra se mueven a distintas velocidades respecto al espacio absoluto e introdujo el concepto de tiempo local para detectar estas variaciones, formuló el “Principio de la Relatividad” en 1900, que fue una de las bases para la formulación de Einstein en 1905 de la ecuación de la E= mc2.
En años finales Poincaré se dedicó a la teoría de la gravedad, afirmó que la gravedad se propaga a la velocidad de la luz en forma de ondas.
Otras contribuciones importantes fueron: La Topología algebraica, La Teoría de funciones analíticas de varias variables complejas, Teoría de funciones abelianas, Geometría algebraica, Teoría de Números, Teoría de ecuaciones diofánticas, Teoría del Electromagnetismo, el concepto de Grupo Fundamental y en la Ecuaciones diferenciales introdujo la Esfera y el Mapa de Poincaré.
En 1912, debido a una complicación de una cirugía de próstata falleció el 17 de julio a los 58 años de edad en la ciudad de París.

por Víctor Mejìa- 5to "D"



FEDERICO VILLARREAL
Federico Villarreal, insigne hombre peruano, nació en Túcume, Lambayeque en 1850. Cursó estudios primarios en la escuela local concluyendo a la edad de nueve años. Sus padres realizaron un gran esfuerzo para enviarlo a Lambayeque a continuar sus estudios secundarios. .

En 1877, Federico Villareal ingresa a la Facultad de Ciencias de la Universidad Nacional de San Marcos, su tesis para la licenciatura en 1880 se titula “El efecto de la refracción sobre el disco de los Astros” .

Villareal concluyó su carrera en la facultad de ciencias, optando el grado de doctor en 1881 con calificaciones sobresalientes. Fue el primer doctor en matemáticas egresado de dicha universidad. Es conocido que Villareal a los 23 años, en 1873, creó un método absolutamente original llamado luego “polinomio de Villareal” y que sirve para elevar un polinomio a una potencia cualquiera y que no es como podría creerse una simple generalización del binomio de Newton.

Como astrónomo, hizo entre otras cosas, cálculos de la trayectoria de algunos cometas visibles en la época. Además durante años preparó calendarios astronómicos que fueron publicados en el Diario “El Comercio” de Lima. La mayor parte de los datos y de los efemérides de los eclipses desde 1886 hasta 1914, en que publicó su último calendario astronómico, se le debe a él. En el mismo diario comentó varias veces diversos acontecimientos astronómicos de la época como el paso del cometa Halley en 1910.

Otros trabajos de investigación que consagran a Villareal como el más grande matemático de su época son sus estudios sobre la clasificación de las curvas del tercer orden, sus estudios sobre sus volúmenes de poliedros regulares, su método de integración por traspasos y sus trabajos acerca de la Teoría de la Flexión de las vigas y la resistencia de las columnas. Todos ellos representan sus más importantes contribuciones al álgebra, la geometría, el cálculo infinitesimal y de resistencia de materiales. En el campo de la geografía matemática se han hecho clásicos sus trabajos acerca de la determinación de meridianos y de coordenadas y altitudes, así como la astronomía, sus esfuerzos por difundir en el Perú las hipótesis de Wronski.

Federico Villareal, fundó la Revista de Ciencia de la Universidad de San Marcos. Hasta su muerte en 1923, escribiría cerca de 600 trabajos y notas de interés científicos en diversas áreas. Por sus aportes a las matemáticas y la astronomía se le ha llamado con justicia “el Newton peruano”. Actualmente una de las más importantes universidades peruanas lleva su nombre.
por Rodrigo Reàtegui- 6to "D"

lunes, 26 de julio de 2010

TRABAJO DE INVESTIGACIÓN: "Grandes Matemáticos de la Humanidad"

El tema es

1. Elegir un pensador que haya hecho un aporte importante para la matemàtica.
2. Incluir los datos más importantes de su biografía. Desarrollar el aporte más importante de éste matemático.
3. Ponerle nombre al artículo de acuerdo con el aporte del Matemático que vas a investigar.
Ejemplo: Newton y la Ley de la Gravitación universal.

SOBRE LA REDACCIÓN
- El artículo de be estar compuesto por una página que tenga como mínimo 28 lineas . Tipo de letra times new roman tamaño 12. Espacio simple y deben ser distribuidos entre un mínimo de 5 párrafos. El título debe ir en una línea. Tipo de letra Times new roman tamaño 12 y en negrita. No comillas, no cursiva, no subrayado. No usar sangria en los párrafos. En cadea párrafo se debe desarrollar una idea del trabajo.

- Cuidar la ortografía. Que cada párrafo contenga ideas claras y precisas. No copiar textos de internet. El texto debe ser inédito

* Se sugiere consultar libros de Ciencias , enciclopedias, artículos de internet, diccionarios, etc, para su investigación.

Los trabajos deberán enviarse a veintenmate@hotmail.com a más tardar el 31 de Agosto. Los trabajos escogidos serán publicados aquí

Evaluación: Comunicación Matematica.

domingo, 25 de julio de 2010

La Naturaleza y los Números

Nature by Numbers from Cristóbal Vila on Vimeo.

domingo, 30 de mayo de 2010

FIGURAS QUE REPRESENTAN NUMEROS.

Cuentan los historiadores que Pitágoras vivió en el siglo VI antes de Cristo y que nació en Samos, ciudad de Grecia, en el año 580 de su era. Por la belleza, profundidad y riqueza de su discurso congregó alrededor de sus ideas a toda una comunidad que se constituyó en una gran escuela. Los Pitagòricos desarrollaron entre otros saberes, la Aritmo_Geometria dando así origen a los llamados Números Figurados.
Para representar los números, los Pitagòricos usaban piedritas, a partir de allí esta práctica se convirtió en uno de los métodos más primitivos de expresión simbólica. Posteriormente se sustituyo este objeto físico por una representación que era una marca o un punto, dando lugar a representaciones puntuales de los números.

Una configuración puntual, es una representación grafica de un conjunto finito de puntos, dispuestos con una intencionalidad, como es el caso de las Constelaciones



Un número figurado es una configuración puntual que representa un cardinal mediante una figura reconocible, usándose preferentemente figuras geométricas.


Un patrón puntual es una estructura de representación mediante configuraciones.


Un número poligonal es un patrón que representa números de acuerdo con un modelo geométrico cuya forma es un polígono y que se genera por ampliación.
Los matemáticos en Grecia antigua utilizaron con frecuencia las representaciones poligonales de los números o número figurado, como los, cuadrados, pentagonales hexagonales, etc. que se obtienen cuando los puntos se disponen formando de una amanera regular triángulos, cuadrados, pentágonos o hexágonos respectivamente.



MOSAICOS
Estos dibujos que ustedes observan a continuación corresponden a Mosaicos.



Sin embargo nosotros trabajaremos con mosaicos especiales formados por cuadrados de cartulina tal como se hizo en clase y formaremos con ellos cuadrados.


Ahora de los mosaicos formados, escogemos solo los que tengan forma cuadrada:


Que tienen de especial los mosaicos de forma cuadrada?
Como son sus lados?
Si ordenáramos estos atendiendo al número de cuadritos que hay por cada lado tendríamos lo siguiente:


Atendiendo al número de cuadritos de las filas y de las columnas de cada mosaico llenamos la siguiente tabla:


Como veras el número total de cuadritos de cada mosaico lo obtenemos multiplicando el número de cuadritos de cada fila por el de cada columna…….en este caso es el mismo

Estas multiplicaciones se pueden ordenar en una tabla como la siguiente:


Y como 1 x 1 es 1 también es un número cuadrado.
Veamos ahora como podemos formar cubos:





Con cuántos dados esta construidos cada uno de los cubos de los dibujos?
Un cubo que tiene en el primer piso 5 cubitos por cada lado ¿Cuántos pisos tendrá? ¿Cuántos cubitos en total?
Ahora con la base en las construcciones que se hicieron de los cuadrados en una tabla, completa la siguiente:


En un piso de 5 x 5 = 25
En los 5 pisos 5 x 5 x 5 = 125
¿Cuántos cubos faltan en la última figura?




Si tuvieras que ordenar los cubos ¿Cuál seria el primero, el segundo….?


Segunda y Tercera Potencia de un Número
El cuadrado de 5 es la segunda potencia de 5:
25 = 5 x 5 = 55 Donde la base es 5 y el exponente es 2

Esta es una nueva forma de escribir 5 x 5. Al número que se repite como factor lo llamamos BASE. Al número pequeño a la derecha y arriba y que indica las veces que aparece el factor lo llamamos EXPONENTE.
¿Cómo leer la segunda potencia de un número?



La tercera potencia de 2 se lee:
2 elevado al cubo
2 al cubo
2 a la tercera potencia

La Segunda y Tercera Potencia de 1

1 x 1 = 1 12 = 1 Es la segunda potencia de 1
1 x 1 x 1 13= 1 Es la tercera potencia de 1

Ahora ya sabemos porque a la segunda potencia se le dice CUADRADO y a la tercera potencia CUBO , porque son números que están representados por esas figuras.
OTROS NUMEROS FIGURADOS
Ustedes ya se iniciaron como alumnos de Pitágoras cuando estudiaron los números pares e impares.
1, 3, 5, 7, 9, 11
Con los impares no es posible obtener parejas completas de puntos, sobra uno o falta uno.



De cada número, no se pueden obtener dos grupos con igual número de puntos.
Con los pares se obtienen parejas completas de puntos y es posible dividir cada número en dos grupos con igual número de puntos.. Los Pitagòricos formaron arreglos cuadrados como ya hemos visto, a esos arreglos se les llama NUMEROS CUADRADOS.
El número 1 es un cuadrado perfecto.
También observaron que a partir de una ficha los arreglos cuadrados se pueden obtener agregando cada vez, y en forma consecutiva, un número impar de fichas.

Al 1 le agregaron 3: 1 + 3 = 4


Al 4 le agregaron 5: 1 + 3 + 5 = 9


Ya sabemos que el 1 es el primer cuadrado: 1 x 1 = 1
Aquí encontramos ahora que los números cuadrados se pueden obtener sumando consecutivamente números impares a partir de 1.
El segundo número cuadrado que es 4 se obtiene sumando los dos primeros números impares; al tercer cuadrado, que es 9, se obtiene sumando los tres primeros……





¿Cuál será la suma de los primeros 7 números impares?
¡Es 49 y 49 es el séptimo número cuadrado!



Los Pitagòricos también encontraron relaciones interesantes entre ciertos arreglos triangulares y los números:
Triángulos Rectángulos


Pero también pueden ser representados por triángulos equiláteros


A los números 1, 3, 6, 10, 15, 21… los llamaron Números Triangulares.
Observando cada arreglo triangular desde uno cualquiera de sus vértices se puede encontrar la forma de expresarlos mediante sumas especiales.

1 + 2 = 3
1 + 2 + 3 =6
1 + 2 + 3 + 4 = 10
Son sumas de números consecutivos a partir de 1.


RELACIÒN ENTRE LOS NÙMEROS TRIANGULARES Y LOS NÙMEROS CUADRADOS.


¿Cómo son los dos números triangulares presentes en el número cuadrado?
Los invito a discutir la siguiente conclusión:

La suma de dos números triangulares consecutivos en un número Cuadrado.

Estos dos ejercicios se los propuso Pitágoras a sus alumnos.
1. Escojan cualquier número triangular, multiplíquenlo por 8 y al producto súmele uno, ¿Qué clase de número es el resultado?.
2. Verifiquen que el doble de cualquier número triangular se puede descomponer como el producto de dos números consecutivos.

¿Les gustaría hacerlo? ¡Adelante!.

Lic. Rosa Natividad Cuba Samamè

domingo, 18 de abril de 2010

La Yupana y los Quipus, instrumentos de cálculo en el imperio incaico.

La Yupana es una calculadora basada en el ábaco que usaron los incas. Este ábaco era un complemento de los Quipus. La “Yupana”, era hecha de diferentes materiales: barro, piedra , madera, hueso, arcilla, algunas de ellas decoradas con motivos humanos, lo que reflejaba la existencia de subtipos originarios de diversas zonas del Tahuantinsuyo; de 20 x 30 cm., diseñada con una serie de cuadrantes, donde se colocaban generalmente granos de maíz y que servían a los incas, para llevar un control estricto de una serie de funciones como los censos, el conteo de producción de la cosecha, cálculos que necesitaban de una estadística general en su gobierno y que utilizaban los quipucamayocs en el imperio incaico.

Recientes estudios realizados afirman de que la Yupana utilizaba un sistema diferente al decimal o de base 10 y que más bien usaba un sistema de base cuarenta. Este sistema de numeración tampoco utilizaba el cero como muchos otros sistemas en el mundo.
Este ábaco peruano ha sido mencionado y descrito en un manuscrito de Guamán Poma (cronista español) , sin embargo su aplicación se dio en muchos países de Latinoamérica a partir de 1986. Cuando La Dra. Martha Villavicencio Ubillús presento ante muchos maestros el uso de la Yupana en las escuelas Peruanas.



El equipo de investigadores liderados por la Dra. Martha, mi profesora y amiga, giraron la Yupana, es decir la figura que aparece en la imagen anterior en el lado inferior izquierdo, en 90º en sentido positivo y encabezaron las columnas con Unidades, decenas, centenas, miles, etc. , lo que la hacia
El fundamento de su utilización radica en que esta Yupana diseñada puede ser trabajada en base 10, haciendo su uso más fácil.






El Dr. Carlos Radicati, en su obra “El Sistema contable de los Incas: Yupana y Quipu”, señala que el estudio de este tablero comenzó en 1969 al descubrirse en Ecuador un objeto semejante al que describe Guamám Poma en 1913. Posteriormente fueron registrados hallazgos en las ruinas de Chan- Chan, en Ancash y zonas aledañas así como en Pisco- Ica (Perú).

Observa ahora una Yupana elaborada con material casero. En ella podemos realizar todo tipo de operaciones. Observa alli el numero representado con semillas, es el numero 28.



Pero la Yupana no fue el único instrumento de calculo utilizado por los incas, también se usaron los quipus. Un quipu es una cuerda de la que penden a manera de flecos cuerdas más pequeñas donde hay nudos. La cuerda grande es la principal, llamada también cuerda madre y a ella se atan otras cuerdas de colores anudadas, estos nudos no tienen siempre la misma forma y tamaño. Los quipus estaban fabricados de algodón.


Luego de que los Quipucamayocs hicieran sus cálculos en la Yupana, estos datos eran trasladados a los quipus, por lo tanto la función de los quipus se restringida solo a una función registradora cuya posibilidad admitía el almacenamiento de datos numéricos mayores mayores.


Una característica de ambos instrumentos radica en la representación del cero. En la Yupana la ausencia de semillas en los casilleros y en el quipu la ausencia de nudos eran evidencia de la presencia del cero en las cifras sin embargo esto pudo acarrearles malas interpretaciones a la hora del conteo.

Otra característica de los Quipus radicaba en que no solamente eran instrumentos matemáticos sino que servían para guardar datos de fechas importantes en el imperio, pero la función mas clara señalada por los cronistas es la de haber servido para contabilizar recursos económicos.

Si observas la figura anterior donde se muestran los nudos que tenia un Quipu podrás ver que existían 3 clases de ellos, El Flamenco, El Compuesto y el Simple.
El nudo flamenco se utilizaba para representaban el 1, el compuesto representaban números del 2 al 9 y el simple representaban los ordenes, decenas, centenas, millares, etc.

En los Quipus, los nudos según escriben los cronistas indicaban el objeto representado, por ejemplo el amarillo representaba el oro, el rojo los guerreros, Estos colores fueron posiblemente trece. Por ejemplo Observemos este Quipu. Aquí hay tres números 3223, y 135. Ahora fíjate en la última cuerda de la derecha, en ella no hay nudo en la posición 2 lo que indicaría la presencia del cero en las decenas. Por lo tanto el número es el 206







En el siguiente quipu hay 3 cuerdas de izquierda a derecha . La primera representa al numero 36, la segunda al numero 141 (observa que el ultimo nudo es un nudo flamenco y representa a la unidad) y el tercero el numero 1 206. Aquí también se observa un espacio entre nudos lo que indicaría la ausencia de cantidad, es decir el cero.



Te invito ahora a confeccionar tus propios Quipus en clase.

domingo, 21 de marzo de 2010

MAS SOBRE EL NUMERO DE ORO Y LA DIVINA PROPORCION. CONSTRUCCION DE EUCLIDES.



DIVISIÓN DE UN SEGMENTO EN MEDIA Y EXTREMA RAZÓN. DIVISIÓN ÁUREA DE UN SEGMENTO.
Dado un segmento AB, dividirle en dos partes AE y EB de forma que AB/AE = AE/EB.. El valor del cociente AB/AE se le denomina número de oro, normalmente representado por F






Dado un segmento AB, se dice que está dividido en media y extrema razón, cuando: "[...] si hay de la parte pequeña a la parte grande la misma relación que de la grande al todo" (Vitrubio)
Esta división de un segmento ya aparece en los Elementos de Euclides, en concreto l en el Libro VI, aunque con una construcción diferente.
Es fácil construir un rectángulo áureo a partir de un segmento de recta inicial.
Se traza un segmento inicial y luego otro perpendicular y de la misma medida a su extremo. Se traza un segmento desde el punto medio del segmento inicial al extremo del otro segmento. Se coloca un compás cuyo extremo anclado esta en el punto medio y el otro en el extremo superior del segmento perpendicular a este, se hace un trazo que será una curva (punto C en la Figura). El rectángulo áureo tendrá de largo el segmento AC en la figura a continuación.






El rectángulo áureo tiene una propiedad muy interesante. A partir de él podemos obtener una infinidad de nuevos rectángulos áureos. El proceso es iterativo (recursivo diría alguien dedicado a la computación) y consiste en quitar a cada rectángulo áureo un cuadrado, la superficie que queda luego de hacer esto es un nuevo rectángulo áureo.



Una forma de reconocer si un rectángulo es áureo es la siguiente




El rectángulo de oro, permite trazar una bella espiral, denominada espiral de oro.



En realidad es una falsa espiral, ya que está constituida por arcos de circunferencia y por tanto no hay una variación continua del radio.
El número de oro se encuentra en algunos polígonos regulares






CONSTRUCCIÓN DEL PENTÁGONO REGULAR Y DE EL DECÁGONO REGULAR A PARTIR DE LA DIVISIÓN ÁUREA DE UN SEGMENTO.
Euclides, siglo III a.c. definió la división de un segmento en media y extrema razón para construir mas fácilmente estos polígonos regulares.







El pentágono estrellado, símbolo de los pitagóricos, es la figura geométrica en que el número de oro tiene mayor presencia.


También encontramos este apasionante número en uno de los poliedros platónicos, el icosaedro. El icosaedro puede formarse uniendo los vértices de tres rectángulos áureos perpendiculares.
Mucho se ha escrito sobre la presencia del número de oro en el arte, en la naturaleza, en las proporciones del cuerpo humano, así como en tarjetas de crédito, te invito trazar el rectángulo áureo y averiguar de que manera se valieron de el para la creación estética.
 
Copyright 2009 Veintenmate